Carbon Foam for Fuel Cell Humidification

R. D. Ott, P. Kadolkar, J. W. Klett Oak Ridge National Laboratory Oak Ridge, TN

2003 Hydrogen and Fuel Cells Merit Review Meeting

Graphite Foam for PEM Fuel Cell Humidification

- > Research Objective
 - Develop efficient designs for humidification systems for PEM fuel cells utilizing high thermal conductivity graphite foam
 - Collaboration with Porvair Fuel Cell Technology
 - → Expertise in heat exchange and recovery units
 - Substitute graphite foam into a recovery unit illustrated below

Schematic of heat/moisture recovery unit

Graphite Foam as a Humidifier

- Tests conducted to quantify the foam's ability to saturate air with water
 - With increased water flow rate into the foam
 - → Decreased simulated electronics temperature (heater block)
 - → Decreased outlet temperature

Electronics Temp (C)

→ Increased RH of outlet air

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Current Status of Research

- ➤ Previous results show that the graphite foam has the ability to wick water by capillary action
- > Goals for the graphite foam recovery unit
 - Maximize the recovery of the water from the outlet side of a fuel cell by condensation
 - Wick the water in order to evaporate it on the inlet side
 - Transfer adequate heat from exhaust side to inlet side
 - → Ideal inlet conditions saturated air at 80°C
- > Current recovery units utilizing metal and ceramic foams
 - Not able to remove adequate heat from exhaust side to increase the temperature of inlet side not able to deliver saturated air at 80°C
- Apply existing mathematical model to optimize humidification system with the graphite foam to obtain conditions that give:
 - Lowest pressure drop in system
 - Highest humidification of inlet air
 - Adequate heat flow to inlet air from exhaust

Near Term Research Tasks

- Evaluate the pore structure of the graphite foam
 - Optimize the pore structure to allow adequate capillary action to occur by condensation of water from the exhaust side in order to humidify the inlet air by evaporation
 - Determine what processing parameters control the size of the windows that connect the pores
 - → The size of the windows will have a significant role in the capillary action of the graphite foam

_	
A	Convective resistance of water
В	Conductive resistance due to tube
С	Conductive resistance due to tube/foam contact
D	Conductive resistance due to foam
E	Convective resistance of air

- Function of how the heat is removed from the surface of the foam by air
- Shows that high thermal conductivity is not as crucial for radiator applications, possibly able to reduce cost by reducing furnace time, or a different type of pitch

The foam's pores structure plays a significant role on being able to reduce the convective resistance of the air

Resistance Contribution

Cost Model for Graphite Foam Production

- Cost model shows the ability to significantly reduce the manufacturing cost of the graphite foam by taking advantage of several factors such as:
 - Low cost pitch if appropriate for the given graphite foam application
 - Less furnace time if full graphitization is not needed for given application
- This shows that for a given application it may be possible to tailor the cost such that graphite foam has a similar cost as currently employed materials for that application

Research Tasks/Future Work

- ➤ Collaborate with Porvair Fuel Cell Technology in the following areas:
 - Modify current bench top test rig in order to correlate the pore/window size with the graphite foams ability to wick water by capillary action
 - Evaluate what effect altering the pore/window size has on the thermal properties of the graphite foam
 - Build a full scale recovery unit utilizing the graphite foam
- ➤ Need to recover as much water from the exhaust in order to minimize carrying water onboard vehicle
- ➤ Need to capture as much heat as possible from exhaust to adequately heat the inlet air to 80°C

Millstones

> 2003

- Identify a pore size of graphite foam that will effectively wick water (by capillary action) and transfer heat through the foam for use in a humidification system that will deliver saturated air at 80°C
 - → Currently on track

> 2004

- Collaborate with a component manufacturer to build and test a full scale humidification system that utilizes graphite foam to condense moisture from the exhaust and reduce or minimize water additions.
 - → Contacts have been made and discussions have been started on how best to attack this issue

> 2005

• Work alongside a fuel cell manufacturer to field test a graphite foam recovery unit on a PEM fuel cell

